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Abstract. Recent advances in semiconductor microprocessing technology now allow the
realization of sub-micron sizedquantum dots, which are quasi-zero-dimensional devices in which
current flow is confined on length scales approaching the Fermi wavelength of the electrons.
The influence of disorder is thought to be strongly suppressed in these devices, so that electrons
propagate while mainly undergoing large-angle scattering at the walls of the dot. At sufficiently low
temperatures, electron phase coherence is maintained over long distances and coherent interference
of electrons becomes an important process in determining the electrical behaviour of the dots. In
this review, we focus on a number of issues revealed by recent experimental studies of open dots,
such as fractal magneto-conductance fluctuations, wavefunction scarring due to selectively excited
periodic orbits, and novel ‘ratchet’ behaviour in non-equilibrium studies.

1. Introduction

Recently, much interest has focused on the use of semiconductorquantum dotsas a novel
experimental probe of quantum chaos, which is a rapidly expanding field of research concerned
with the nature of the crossover between the classical and quantum regimes [1–3]. Quantum
dots themselves are quasi-zero-dimensional semiconductor structures in which the flow of
electrical current is confined on length scales approaching the Fermi wavelength of the
electrons. At sufficiently low temperatures, phase coherence of the electron wavefunction
is maintained over long distances and the transport properties of the dots are determined by a
variety of quantum mechanical phenomena, including single-electron tunnelling [4,5], discrete
energy quantization [6, 7], coherent electron wave interference [8–10], and spin-regulated
transport [11]. From the perspective of quantum chaos, interest in the properties of quantum
dots derives from the ability to fabricate devices in which the influence of disorder scattering
is strongly suppressed. In suchballistic dots, large-angle scattering of electrons occurs mainly
at the confining walls of the dot, whose geometry is therefore expected to play a crucial role
in determining the overall device behaviour.

The key components of a quantum dot are shown in figure 1 and consist of a sub-micron
sized centralcavity that is connected to external reservoirs by means of waveguideleads. In
most situations we consider here, the dots are formed using the split-gate technique [12], the
details of which are discussed in the following section. The use of electron-beam lithography
to define the split-gate structures allows the realization of dots on the sub-micron scale, which
size is comparable to the spatial extent of the potential fluctuations that exist in the underlying
electron gas [13, 14]. A particular advantage of the split-gate approach is that the dot leads
may be realized usingquantum point contacts, whose width can be varied continuously in
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Figure 1. Scanning electron micrographs showing the different gate structures that may be utilized
to realize quantum dots. (a) Split-gate dot structure in which the application of a negative bias to
the metal gates (lighter regions) results in the formation of a coupled quantum dot. Picture courtesy
of A Adresen and C Prasad. (b) In this structure the metal gate acts as a self-aligning mask and
protects the underlying electron gas during an etching step. Variation of the bias applied to the gate
therefore allows the electron number in the dot to be varied. Picture courtesy of D P Pivin Jr.

experiment. With the leads configured to form tunnel barriers, current flow through the dot
can only occur by tunnelling, the details of which are known to be determined by the Coulomb
blockade effect [4]. In this review, however, we choose to focus on the behaviour exhibited
by openquantum dots, whose leads are configured to support one or more propagatingmodes.
The Coulomb blockade effect is thought to be suppressed in such open dots [5, 15] (we briefly
return to a discussion of this issue in section 7), in which electron transport instead provides a
natural connection to the study of quantum chaos.

Initial studies of the transport properties of open dots were performed by Marcuset alwho
measured the magneto-resistance of circular- and stadium-shaped dots [16]. At temperatures
below a degree kelvin, the magneto-resistance of the dots was found to exhibit reproducible
fluctuations, which were ascribed to coherent interference of geometrically scattered electrons
[17] (figure 2). The spectral content of the fluctuations was found to be different for the two dot
geometries studied and this behaviour was argued to result from the influence of the classical
scattering dynamics on the quantum transport behaviour (the circle is expected to give rise to
regular scattering while the stadium is known to bechaotic). Another feature of this experiment,
that was confirmed in subsequent studies [18–20], was the observation of a zero-field peak in
the magneto-resistance, which was later ascribed to the ballistic analogue of weak localization
[21]. Based on semi-classical arguments, it was proposed that the lineshape of this peak
should provide a probe of electron scattering in the dots, with a Lorentzian form predicted for
chaotic scattering and a linear lineshape expected for regular dynamics [21]. These predictions
appeared to be convincingly confirmed in a later experiment by Changet al who studied the
magneto-resistance of multiply connected arrays of circular- and stadium-shaped dots [22].

Subsequent to the studies described above, a large number of experiments have been
performed to investigate different aspects of electron dynamics in open dots. The purpose of
this review is to provide a general overview of these studies, which is organized as follows.
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Figure 2. The magneto-resistance of stadium- (top) and circular-shaped dots is found to exhibit
pronounced and reproducible fluctuations at low temperatures. Figure reproduced with permission
from [16]. Copyright 1992 by the American Physical Society.

In section 2, we consider some of the techniques available for the fabrication of quantum dots,
and focus, in particular, on the use of gated nanostructures. Since an important parameter
for determining the influence of quantum effects in mesoscopic devices is provided by the
electron phase-breaking time, in section 3 we summarize the results of experiments that have
been performed to measure this parameter directly. In section 4, we discuss the results of recent
experiments that demonstrate thefractal nature of the magneto-conductance fluctuations in
open dots, while in section 5 we consider the important role played by selectively excited
orbits in the dots. At suitably low temperatures, interference of these orbits gives rise to
marked wavefunction scarring and in section 5 we consider the experimental signatures of
this scarring. An alternative interpretation of the zero-field magneto-resistance peak, which
ascribes its origin to energy averaging of the discrete level spectrum in the dots, is next discussed
in section 6. In section 7, we consider some outstanding issues raised by the studies performed
to date, before concluding in section 8. Since we focus on the behaviour exhibited byopen
dots, the reader should note that one issue we do not consider is the use ofweakly coupleddots
to investigate the predictions of random matrix theory [23–26]. This topic has recently been
well served by the thorough review of Beenakker [27].

2. Experimental techniques for quantum dot realization

While a number of different techniques are available for the fabrication of quantum dots [28],
the split-gate technique [12] is the preferred choice in studies of quantum chaos. In this
approach, metal gates with a fine-line pattern that is defined by electron beam lithography
are deposited on the surface of a GaAs/AlGaAs heterojunction. Application of a suitable
negative bias to the gates depletes the regions of electron gas from directly underneath them,
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forming a dot whose lead openings are defined by means of quantum point contacts [29, 30]
(figure 1(a)). The use of electron beam lithography to pattern the gates allows the realization
of sub-micron sized dots, whose size is therefore comparable to the spatial extent of the
short-range potential fluctuations in the underlying two-dimensional electron gas [13]. These
fluctuations are associated with the statistical distribution of donors in the AlGaAs layer and
recent studies suggest that minimum-energy considerations cause the donor ionization to order
into a quasi-regular lattice [14]. In the presence of the resulting weak disorder, electronic
motion within the dots should then be predominantly ballistic in nature, with large-angle
scattering events being largely restricted to the confining walls [31]. Another advantage of
the split-gate approach is that, by the definition of amulti-gatedot structure such as that of
figure 1(a), it is possible to perform transport ensemble averageswithin the same dot[32].
This approach has previously been exploited to compare the averaged transport properties of
open dots to the predictions of random matrix theory [23–26].

In a variation on the split-gate technique, a single gate can be deposited on the
semiconductor surface and used as a self-aligning mask to protect the underlying electron
gas during a subsequent etching (or exposure) step [18, 33, 34] (figure 1(b)). A particular
advantage of this approach is that, after definition of the cavity by the etching step, the metal
gate may be biased to modulate the effective carrier density in the dot. Kelleret al have
fabricated such devices, for example, by exposing the ungated regions of the sample to a low
energy dose of Xe ions [18], while Leeet al have used argon ions of similar energy [33].
Alternatively, Pivinet al have realized such dots (figure 1(b)) by exposing the metallized
sample to a reactive ion etch [34].

3. Studies of electron dephasing in quantum dots

One of the most important parameters for determining the strength of quantum effects in
mesoscopic devices is the phase-breaking time (τφ), which is essentially the average time over
which the wavelike nature of the electrons is preserved [28]. The study of phase-breaking has
a long history in disordered systems in which, at the low temperatures of interest here, the main
source of dephasing is thought to be due to electron–electron scattering. Our understanding of
dephasing in ballistic quantum dots, on the other hand, remains at a primitive level and is based
almost exclusively on the results of a small number of experiments [32, 34–38]. Theoretical
calculations of the temperature dependence of the phase-breaking time are even fewer in
number, although Sivanet al have considered the dephasing rate due to electron–electron
scattering in anisolateddot [39]. These authors obtain a phase-breaking time that varies with
temperature (T ) asτφ ∝ T −2, although it is not clear whether their model is relevant to the
opendots of interest here. More recently, however, Takane [40] considered phase-breaking
due to Coulomb interactions in a chaotic dot and found thatτφ ∝ T −1. This is essentially
similar to the behaviour found for electron–electron scattering in two-dimensional systems
and, as we will discuss below, is also much closer to the temperature dependent behaviour
found in a number of different experiments.

In experiment, Marcus and co-workers have developed a number of techniques for
extracting phase-breaking times that derive from the assumption of chaotic electron scattering
in the dots [32, 35, 41]. In one such approach, the change in the spectral content of the magneto-
conductance fluctuations in small dots is measured as the width of their lead openings is varied.
To obtain an estimate for the phase-breaking time, the effective escape rate ofcoherentelectrons
from a chaotic dot is exploited [35, 41]:

γeff = 1

τφ
+ γesc (1)
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Figure 3. The variation of phase-breaking time with temperature measured by Clarkeet al . Solid
and open symbols are the results for two different dots. The dotted line shows theT −2 variation
predicted for isolated quantum dots, while the dashed line indicates aT −1.2 dependence. SEM
micrographs of the two dots studied are shown as insets, in which the lighter regions correspond
to the split-gate structure. The inner dimension of both dots is roughly 2µm. Figure reproduced
with permission from [35]. Copyright 1994 by the American Physical Society.

whereγesc is the rate at which electrons leave the dot via either of its leads. Sinceγeff
determines the spectral content of the conductance fluctuations [35, 41], using equation (1) it
is possible to extract an estimate forτφ from these fluctuations. (An important assumption
here is that the dephasing rate should beindependentof the width of the lead openings.)
Using this approach, Clarkeet al [35] obtained estimates for the phase-breaking time and the
results of their analysis are summarized in figure 3. Around a degree kelvin, the data show
something close to aT −1 variation, while a saturation is observed at much lower temperatures.
Here, the phase-breaking time is of order a few hundred picoseconds, which is comparable to
the values obtained in other mesoscopic systems [42, 43]. In a later experiment by Huibers
et al [32], the amplitude of the ensemble-averaged zero-field peak was compared to the
predictions of random matrix theory [27, 44] in order to obtain estimates forτφ . Similar
to the study of Clarkeet al these authors found low temperature values forτφ of the order a few
hundred picoseconds and a variation with temperature close toT −1. One important difference,
however, was thatno evidence for a low temperature saturation was seen in their experiment,
suggesting that the saturation seen previously may not be intrinsic to the dots. Even more
surprisingly, these authors were able to fit their data for the temperature dependence ofτφ
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Figure 4. Variation of the phase-breaking time with lead opening, measured in three different dots
with nominally square gate geometry. The solid circles are for a 1µm dot, the open circles are for
a 0.4µm dot and the open triangles are for a 0.6µm dot. Lines are intended to guide the eye and
additional error bars are omitted for clarity. The inset shows an SEM micrograph of a 0.6µm dot
in which the spacer bar represents 1µm. Figure reproduced with permission from [38].

using theoretical predictions for two-dimensionaldisorderedsystems, although the success of
this approach relied on the introduction of a fitting parameter whose significance is still not
well understood.

In an alternative approach to those above, Birdet al [36, 38] have determined values for
the phase-breaking time using a model that was originally developed to describe the properties
of the magneto-conductance fluctuations in quasi-ballistic quantum wires [45]. This approach
does not require the assumption of chaotic scattering in the dot but instead determinesτφ
from the magnetic field dependence of the conductance fluctuations in the edge state [46, 47]
regime. In temperature dependent studies, these authors have found that their data forτφ
are best fitted by aT −1 variation, consistent with the experiments above. They also find a
saturation ofτφ at temperatures lower than the average level spacing in the dot (1, where
1 = 2πh̄2/m∗A andA is the effective area of the dot), a conclusion that is supported by the
scaling of the saturation temperature with dot size [48]. Birdet al have also used the same
technique to determine the variation of the phase-breaking time with lead opening and find a
strong enhancement ofτφ as the leads are narrowed to support a few modes [38] (figure 4).
While the origin of this enhancement remains undetermined, the authors have suggested that a
suppression of the phase space available for electron scattering, which occurs as the dot leads
are narrowed, may be responsible. Further emphasizing the importance of the lead openings
in quantum dot transport, Pivinet al [34] recently studied phase-breaking in a quantum dot
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Figure 5. Left figure: low-temperature (0.3 K) measurements of the differential resistance versus
bias voltage for the triangular dot shown in the inset. The different curves were obtained by varying
the Fermi energy in the dot using an appropriate top gate structure. Right figure: net rectified current
obtained in the asymmetric billiard when an ac ‘rocking’ bias voltage is applied. Note how the sign
of the rectified current depends on the amplitude of the rocking voltage. For a fuller discussion of
this phenomena see [52]. Figure provided courtesy of H Linke.

coupled to longquantum wires(figure 1(b)). These authors found a saturation ofτφ that persists
to temperatures much higher than the average level spacing, followed by a high-temperature
decay that is proportional toT −2/3. Since this latter variation is precisely that expected for
dephasing in a one-dimensional wire, the authors suggest that the high-temperature decay of
the phase-breaking time may be related to the properties of thereservoirsto which the quantum
dot is coupled. The origin of their low-temperature saturation remains undetermined, though.

A valuable probe of phase coherence in quantum dots should be provided by non-
equilibrium transport studies, although relatively few such reports have appeared to date
[49–52]. Linkeet al [49, 50] used the properties of the zero-field resistance peak to compare the
dephasing of equilibrium and non-equilibrium electrons and found a common dependence ofτφ
on energy. At higher energies, the phase-breaking time was found to vary as an inverse square
law of temperature, consistent with the theoretical predictions of Sivanet al [39]. At energies
less than or comparable to the average level spacing, however, the phase-breaking time was
found to saturate, similar to the behaviour discussed above [36, 48]. Switkeset al [51] studied
the influence of measurement current on electron temperature and found this to be determined
by an equilibrium condition where the energy supplied to the dot by non-equilibrium electrons
is balanced by loss to the reservoirs via the point contact leads. Probably the most exciting
issue revealed by these studies, however, is the observation of ‘ratchet’ behaviour in asymmetric
triangular billiards [52] (figure 5). A crucial property of such billiards is their lack of spatial
inversion symmetry, which may give rise to a net drift of electrons even when the time-average
of externally applied forces is zero. Linkeet al [52] measured the differential resistance of a
triangular billiard as a function of the dc source–drain bias and found this to exhibit marked
asymmetries on reversal of the bias direction (figure 5). These in turn were attributed to
asymmetries that are generated in the confining profile of the dot on reversal of the dc bias.
Remarkably, these authors found that the asymmetric geometry of the dots can actually cause
rectificationof an ac current. The rectification vanishes at temperatures above a few kelvin,
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indicating that its origin lies in a quantum interference effect. This should be contrasted with the
rectification effect recently reported by Songet al [53], who studied the properties of ballistic
junctions incorporating asymmetric scattering centres and found theirI–V characteristics to be
highly asymmetric. This latter behaviour was found to persist (albeit weakly) to liquid nitrogen
temperatures and can essentially be accounted for in terms of a classical ballistic effect.

4. Fractal magneto-conductance fluctuations in open dots

Original theoretical studies of electron scattering in quantum dots employed a semi-classical
approximation in which electrons were assumed to follow classical trajectories while
accumulating a quantum mechanical phase [17, 21]. According to this approach, the dot
conductance could then be computed by exploiting the fact that, for particles trapped in a
hard-walleddot, the number of trajectories enclosing a specific area is given as [54–56]:

Nchaotic(A) = N0 e−αA

Nregular (A) = N0A
−γ .

(2)

Here,A is the enclosed trajectory area,α andγ are suitable constants, andNchaotic andNregular
are the area distribution functions for chaotic and regular billiards, respectively.

A problem with the arguments above is that the confining profiles of quantum dots are
typically soft walledin nature [14] (this is particularly true for the split-gate dots of interest
here). Ketzmerick pointed out that the effect of such potentials is to generate amixedphase-
space for electron motion, consisting of a sea of chaotic trajectories that is interspersed with
an infinite hierarchy of stable cantori [57] (figure 6(a)). In such mixed systems, the area
distribution typically takes apower-lawform, which arises when chaotic trajectories become
trappedin the vicinity of regular orbits (figure 6(b)), and the resulting conductance fluctuations
are expected to befractal in nature. That is, the fluctuations are expected to exhibit structure
on a number of different magnetic field scales (figure 6(a)). When the area distribution in the
dot takes the formN(A) ∝ A−γ , Ketzmerick was able to show that the fractal dimension (DF )
of the conductance fluctuations should be given as:

DF = 2− γ
2
. (3)

For fractal fluctuations, 1< DF < 2 which in turn implies that 0< γ < 2. The fractal
dimension is easily determined from experimental magneto-conductance curves using standard
approaches such as box-counting. Here, the number (N ) of non-overlapping boxes of area
1B2, required to completely cover a magneto-resistance trace, is counted as a function of the
box-width (1B). The fractal dimension is then given as [58]:

DF = lim
1B→0

− logN1B

log1B
. (4)

One of the first experiments to demonstrate the fractal nature of fluctuations was performed
by Heggeret al [59], who studied the low temperature magneto-conductance of gold nanowires
and found 1.05 < DF < 1.18. Subsequently, fractal fluctuations have been reported in
a number of different studies of quantum dots [60–63]. Micolichet al [60] studied the
fluctuations in a square-shaped dot and, at the lowest experimental temperatures, found values
for DF as high as 1.38. These authors also studied how the fractal dimension is modified at
higher temperatures, where phase-breaking imposes an upper limit on the trajectory length
that may be traversed coherently by electrons. Rather than suppressing the fractal fluctuations,
increased dephasing was found to lead to a corresponding decrease in the fractal dimension.
Indeed, in a later report, the same authors were able to demonstrate a direct correlation between
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Figure 6. (a) Hierarchical phase space structure of a 2D chaotic system and associated fractal
conductance fluctuations. (b) The probability (P(t)) of staying trapped in a cavity for a time
greater thant . Note thepower-lawdecay of this probability. The upper right inset shows a typical
trajectory trapped in the hierarchical phase space structure giving rise to the power-law behaviour.
The lower inset shows the soft-walled cavity structure employed in the numerical simulations.
Figure reproduced with permission from [57]. Copyright 1996 by the American Physical Society.

the fractal dimension and the phase-breaking time [63] (figure 7). Variation of the split-gate
voltage was also found to modify the fractal dimension and was attributed to the influence of
the gate voltage on the soft profile of the dot. Here it was suggested that, by modifying the
detailed profile of the dot, the effect of the gate voltage is to alter the trajectory-trapping effect
mentioned above. The influence of gate voltage was studied in greater detail by Sachrajda
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Figure 7. A comparison of the variation of the fractal dimension (upper plot) and phase-braking time
(lower plot) with temperature for two different sized quantum dots. The 1µm dot geometry studied
is shown as an inset to the upper plot. The inset to the lower plot shows measured convectance
fluctuations in the 1µm dot at temperatures of 4.2 K, 1.4 K, 0.48 K and 0.08 K, from top to bottom,
respectively (the curves are offset for clarity). Figure provided courtesy of A P Micolich.

et al [61], who found that the gate-voltage could be used to change the fractal dimension
continuouslyin the range 1.05< DF < 1.4, withDF tending towards unity as the strength of
the confining potential was reduced (figure 8).

The fractal behaviour discussed above provides a good example ofstatistical self-
similarity [57]. Recently, however, Tayloret alprovided remarkable evidence for the presence
of exactlyself-similar structure in the magneto-conductance of a Sinai billiard [64]. This
billiard was defined by fabricating a bilayer gate structure in which the lower set of gates was
used to define a square dot while the upper gate was used to form a tunable anti-dot at the centre
of the billiard (figures 8 and 9). For particular values of the voltages on these gates, it was found
that the magneto-resistance exhibited exact self-similarity, according to which the resistance
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Figure 8. Measurement of fractal conductance fluctuations in two different dot geometries. The
upper left figure shows the low-temperature (0.05 K) fluctuations measured in a stadium-shaped dot
while the lower left figure shows corresponding measurements for a Sinai dot geometry. The right
figure shows the variation of the fractal dimension of the stadium-shaped dot with gate voltage.
Measurements of the fluctuations in this dot at different gate voltages are shown in the inset to this
figure. Figure reproduced with permission from [61]. Copyright 1998 by the American Physical
Society.

looked the same when viewed at different magnifications (figure 9). Such exact self-similarity
was not anticipated in the original work of Ketzmerick and since its observation a number of
attempts have been made to account for its origin [65–67]. While none of these studies have
been able to clearly reproduce the behaviour seen in experiment, it nonetheless seems clear that
the exact form of the self-similarity implies a highly selective nature of electron transport in
the dot. Fromholdet al [65] have suggested that the coarse structure observed in the magneto-
resistance is related to orbits that enclose the central anti-dot, while the fine and ultra-fine
structure is related to much longer semi-classical paths. The difference between statistical
and exact self-similarity may be quantified by defining the magnetic field and conductance
scaling factorsλB andλG, respectively [62, 68]. These factors connect the structure observed
at different magnetic field and conductance scales and, in the case of exact self-similarity, take
only a limited set of values. In contrast, for statistically self-similar fluctuations, there exists
acontinuousrange of scaling factors [68].

In a study of the fluctuations in a stadium and a Sinai dot geometry, Sachrajdaet al
noted that the exact self-similarity of the magneto-conductance appears to be a characteristic
of the Sinai geometry (figures 8 and 9) alone [61]. Support for this idea is provided by
the later work of Tayloret al who studied the magneto-conductance in three different dot
geometries [62] ((a)–(c), figure 10). These authors found that the fluctuations measured in
emptydots (a) and (b) typically exhibitstatisticalself-similarity, suggesting that the observation
of exact self-similarity in geometry (c) results from the presence of the anti-dotinside the
billiard geometry. To allow the transition from statistical to exact self-similarity, it was
suggested that the presence of this anti-dot gives rise to an orbit selection process that does not
occur in empty geometries. The nature of the selection process is not presently understood,
however.
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Figure 9. Evidence for exact self-similarity in the low-temperature (0.03 K) magneto-resistance
of a Sinai dot geometry. The device geometry and its dimensions in microns are shown in the left
hand side of the figure. The magneto-resistance curves shown were obtained by biasing both the
outer gates and central anti-dot with a negative gate voltage. Figure reproduced with permission
from [64]. Copyright 1997 by the American Physical Society.

Figure 10. The different quantum dot geometries studied in [60]. (a) Square. (b) Empty Sinai
billiard. (c) Sinai billiard with central anti-dot.

5. Periodic orbits in open quantum dots

Early studies [16] of the magneto-conductance fluctuations in open dots were motivated by
the theoretical work of Jalabertet alwho suggested that the spectral content of the fluctuations
should sensitively depend on the type of electron dynamics in the dot [17]. The basic approach
of these authors was to express the transmission probability of the dot as auniformsum over
all semi-classical trajectories connecting the input and output leads. In a dot that generates
chaotic scattering, electrons are expected to sample phase space uniformly and the resulting
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Figure 11. The low-temperature magneto-resistance of
open quantum dots is found to exhibit highly reproducible
fluctuations. Measurements were performed at 0.01 K on a
0.4µm dot (for the dot geometry see the inset) and the raw
fluctuations are shown in the left hand figure. A Fourier
transform of these fluctuations is shown in the middle
figure and is characterized by a few dominant frequencies.
The correlation function of the fluctuations is shown in the
right hand figure ad shows clear oscillations. In order to
reduce statistical error in the tail, this correlation function
was computed using afixed number of data points to
determine each value. Unpublished data.

transmission probability should then be determined by abroad distribution of electron paths.
At temperatures where phase coherence is maintained over long distances, interference of
electron partial waves that propagate along these paths is then expected to crucially influence
the conductance of the dot. A magnetic field may be used to modulate this interference and is
expected to give rise to highlyaperiodicconductance fluctuations, by varying the magnetic flux
that is enclosed between the different trajectories. Basically, the random (butdeterministic)
nature of these fluctuations may be understood to result from thebroaddistribution of electron
trajectories that contribute to the interference [17].
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Figure 12. Numerical simulation of the electron probability density near a quantum point contact
reveals significantcollimation of the emerging beam. These simulations were performed using
a lattice matching technique that is described in [75]. The left hand figure shows the particular
geometry employed in the calculations while the squared amplitude of the electron wavefunction
is plotted in the right hand figure. Darker regions correspond to higher probability density. Figure
courtesy of R Akis.

The semi-classical model discussed above is only expected to be valid in situations where
the point contact leads are configured to support a large number of modes. In most experi-
ments, however, this condition is not usually satisfied and very different behaviour is typically
observed. Rather than aperiodic fluctuations, the magneto-resistance of such few-mode dots
instead shows quite regular oscillations [69–71] (figure 11). A Fourier analysis of the fluctu-
ations reveals them to be dominated by a small number of frequency components, while their
correlation function [72] shows a series of periodic oscillations in its tail. These oscillations im-
ply the existence of long-range correlations in the data that are not expected for truly aperiodic
fluctuations. Birdet al have studied the scaling properties of the fluctuations and have found
their regular nature to be more pronounced in smaller dots, suggesting that a quantum size effect
may at least be partially responsible for their observation [70, 71]. These authors also found
that the dominant frequency components of the fluctuations are invariant to changes in either
temperature or gate-voltage, a property that has been confirmed in the studies of Zozoulenko
et al [73]. Motivated by these observations, Birdet al have suggested that electron transport
in open dots is dominated by a small number ofselectively excitedandhighly stableorbits.
Interestingly, correlation functions showing similar oscillatory behaviour have also recently
been reported in ion scattering studies of the12C +24 Mg system [74], and have been attributed
to the formation of stable states in the resulting hyperdeformed intermediate dinucleus. The
observation of such common behaviour in very different physical systems is highly suggestive
of a universal phenomenon and, moreover, points to significant limitations in the usefulness
of random matrix theory when describing the behaviour of strongly quantized systems.

The regular nature of the fluctuations found in open dots may be accounted for by
considering the properties of the point contact leads that couple the dots to their outside
environment [75–78]. When configured to support a small number of modes, the quantum
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Figure 13. Expansion coefficientscmn of the electron wavefunction in
an open square dot, obtained for different numbers of occupied modes
in the quantum point contact leads (indicated in figures). The expansion
coefficients are computed by decomposing the electron wavefunction
using equation (5) in the text. The dashed lines indicate the circle with
radiusr = kFL/π , whereL is the size of the dot. Figure reproduced
with permission from [78]. Copyright 1997 by the American Physical
Society.

mechanical nature of these leads is strongly resolved [75]. Consequently, electrons incident
from the external reservoirs are only able to enter the dot by matching their transverse
momentum component to one of the quantized values within the leads. This process results in
collimation [47] of the incoming electrons, which are injected into the dot in a highly directed
beam (figure 12). In sufficiently small dots, the discrete nature of the electronic energy spectrum
may also remain resolved, in spite of the coupling that is provided to the external environment
[79, 80]. With the collimation generated by the input contact, and the discrete nature of the
dot states, Akiset al have argued that transport through the dots should be dominated by a
small number of orbits that are selected by the point contact leads [75]. The selection process
itself is thought to arise in a manner in which those orbits within the dot whose momentum
components closely match those of the incoming electron beam are preferentially excited. The
stability of the selected orbits, inferred from experiment, is thought to be a consequence of
the collimation provided by the input point contact and the discrete quantization within the
dot [70]. Equivalently, this process may be viewed from a quantum mechanical rather than
a semi-classical perspective, as has recently been emphasized by Zozoulenkoet al [77, 78].
These authors considered how electron transport through open dots may be described as a
mode-matching process, in which quantum mechanical states within the dot couple selectively
to one-dimensional modes in the point contact leads. Their approach involves expressing the
wavefunction (9) of an open square dot as a selective superposition of eigenstates of itsclosed
counterpart (figure 13):

9(x, y,E) = 2

L

∑
m

∑
n

cmn(E) sin
mπx

L
sin

nπy

L
(5)

whereL is the size of the dot and thecmn are suitable expansion coefficients. Using equation (5),
Zozoulenkoet al were able to show that9 typically consists of a superposition of asmall
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Figure 14. Calculated probability density in a 0.3 µm quantum dot at a magnetic field of 0.28 T.
Lighter regions correspond to enhanced probability density and calculations are performed for
different values of the phase breaking time. From top left to bottom right,τφ = ∞, 500 ps, 100 ps,
50 ps, 10 ps and 1 ps, respectively. Viewed in reverse sequence, this figure may therefore be
considered as illustrating the time-dependent growth of the wavefunction scar within the quantum
dot. Figure reproduced with permission from [81].

number of closed dot states, whose momentum components closely match the quantized values
within the leads [77]. This selective behaviour was even found to persist in cases where the
dot leads were configured to support as many as ten modes.

At temperatures where electron phase coherence is maintained over long distances, inter-
ference of the selectively excited dot states may give rise to wavefunctionscarring, according
to which the probability density in the dots becomes organized along the path of a small number
of semi-classical orbits [69, 75, 76]. An example of the scarring is shown in figure 14, in which
the wavefunction clearly shows the imprint of a diamond-shaped orbit. Using numerical sim-
ulations, Akiset alhave shown that the details of the scarring are not independent of magnetic
field but insteadrecur periodically as the field is varied [75]. These authors also found that the
basic field scale for recurrence of the scars closely corresponds to the fundamental periodicities
of the conductance fluctuations measured in experiment. The scarring is thought to be built up
in a highly recursive process in which electrons undergo multiple traversals of the same basic
orbits while maintaining phase coherence [70, 71, 81]. An important requirement for observa-
tion of the scarring is therefore that electrons remain coherently trapped in the dot for long time
periods. In figure 14, for example, the diamond scar is only resolved for phase-breaking times
in excess of 100 ps, by which time the electron has undergone roughly a hundred traversals of
the dot. This property of the scarring results in a strong sensitivity to temperature variations,
consistent with the results of experiment, which reveals the fluctuations to be quenched by a
temperature of a few degrees kelvin [70]. It therefore seems worth re-emphasizing that both
the periodic fluctuations in the conductance, and the associated wavefunction scarring, are
associated with the interference oflongsemi-classical orbits.

While the regular nature of the magneto-conductance fluctuations in open dots was
apparent from the earliest experimental studies, little consideration was given to their detailed
origin [16, 22]. The connection between the fluctuations and the discrete density of states of
open dots was first emphasized by Perssonet al who studied electron transport in circular
dots [82, 83]. More recently, Christenssonet al have used temperature dependent studies
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Figure 15. Classical and quantum features in the magneto-resistance of a triangular quantum dot.
The left hand figure shows the measured magneto-resistance at 4.4 K (thin solid curve) and 0.3 K
(thick solid curve). Indicated are the trajectories of electrons that are thought to be related to
the local maxima of the resistance atB/Bc = 1, 3 and 5. The dashed line shows the results of
numerical simulations. In the right hand figure, classical simulations of electron transport in the
dots are presented. Superpositions of the trajectories of 5000 electrons injected through the side
opening at the magnetic fields indicated are shown. Note that only the trajectories of electrons
reflectedby the billiard are plotted. AtB/Bc = 1 andB/Bc = 3 the probability of reflection is
high and the magneto-resistance reaches a maximum. The reflecting trajectory atB/Bc = 2 is
unstable, however, and few electrons follow this or similar trajectories. Consequently, no magneto-
resistance maximum is observed at this magnetic field. Figure reproduced with permission from
[84]. Copyright 1998 by the American Physical Society.

Figure 16. The low-temperature (20 mK) magneto-conductance of three-terminal triangular dots
shows highly regular oscillations that are considerably stronger than any random fluctuations. The
oscillations are shown in the left hand figure while their Fourier spectra are presented in the right
hand plot. A single peak dominates the spectrum, suggesting that just a single orbit dominates
transport. The orbit takes a triangular form at weak fields but gradually evolves into a cyclotron
orbit at higher fields, as illustrated in the figure. The dot geometries studied are shown as insets in
which the white spacer bars indicate a length of 1µm. Figure reproduced with permission from
[85]. Copyright 1998 by the American Physical Society.

to link specific classical electron trajectories to the quantum mechanical fluctuations in
triangular-shaped dots [84]. At temperatures of a few degrees kelvin, quantum interference
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Figure 17. The low-temperature (0.01 K) conductance of split-gate dots shows a series of highly
regular oscillations when their gate voltage is varied. The results shown here were obtained for the
same dot geometry as that shown in figure 11. The upper curve shows the measured variation of
resistance with gate voltage while the lower conductance oscillations were obtained after subtracting
a monotonic background from the raw data. Unpublished data.

effects were found to be suppressed and the magneto-resistance instead exhibited a series
of peaks related to the formation of magnetically focused orbits in the dots (figure 15).
At millikelvin temperatures, however, the magneto-resistance showed periodic oscillations
which were argued to result from an Aharonov–Bohm effect involving a particular focused
orbit, a conclusion that was supported by the results of classical and quantum simulations
(figure 15). This particular orbit was found to be selected by its short length and relatively
high stability, while other more unstable orbits were not found to be important for classical
or quantum transport through the dot. In another report, Bøggildet al studied electron
transport in triangular-shaped dots with a novel three-lead geometry [85]. High-temperature
features in the magneto-resistance of these dots were ascribed to classical focusing effects,
in which electrons are directed into different leads at certain magnetic fields. Periodic
magneto-conductance oscillations were observed at millikelvin temperatures, however, and
were attributed to interference involving a dominant semi-classical orbit. This orbit was found
to be robust to changes in both magnetic field and gate voltage, consistent with the earlier
results of Birdet al [69]. The orbit was also argued to have a triangular form at weak fields,
which gradually evolved to form a cyclotron orbit with increasing magnetic field (figure 16).
A similar transition has also been studied by Zozoulenkoet al [73].
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Figure 18. The left hand figure shows measured conductance traces of an electron stub tuner at
three different temperatures: 0.09 K (thick solid line), 1 K (thin line) and 2.5 K (dotted line). The
inset shows the basic gate geometry of the electron stub tuner, which is defined by four surface
gates. The stub has lithographic heightH = 0.3µm and width 2w = 0.25µm. The quantum point
contact leads have lithographic widths of 0.25µm and the effective geometry of the tuner under
gate bias is demarcated by the linesyt andyb. The right hand figure shows the computed variation
of the conductance of the stub tuner at zero temperature. Figure reproduced with permission from
[90]. Copyright 1999 by the American Institute of Physics.

Regular conductance oscillations, with similar characteristics to those discussed above,
have also been observed in experiments in which a suitable gate voltage is varied atfixed
magnetic field [82, 86–90] (figure 17). In the early study by Hirayama and Sadu it was sug-
gested that the oscillations reflect the gate-voltage-induced movement of individual dot states
past the Fermi surface [87]. Other authors have argued, however, that, rather than providing a
spectroscopy of individual dot states, the oscillations instead reflect the details of a more robust
shell structure that is formed at highly degenerate points in the dot spectrum [82, 91]. More
recently, Birdet al have argued that the oscillations are related to the periodic recurrence of
certain wavefunction scars with gate voltage, reminiscent of the behaviour found in magneto-
transport studies [92, 93]. The latter authors analysed the properties of the oscillations in dots
with different lead alignments and found their results to be consistent with different scars
being excited by the distinct lead geometries [93]. Debrayet alhave focused on the behaviour
exhibited by T-shapedelectron stub tuners, which are essentially strongly confined quantum
dots, and also report periodic oscillations in the conductance as gate voltage is varied [90]. A
theoretical analysis of their results suggests that the oscillations are related to reflection reso-
nances of electron waves from the resonant states within the stub (figure 18). This conclusion
is supported by the later work of Birdet al who also found the oscillations to be related to the
movement ofspecificdot states past the Fermi surface with increasing gate voltage [93].

6. Zero-field resistance peak in open dots

Weak localization is a well known correction to the conductance of disordered systems and
results from a process known as coherent backscattering [94], in which diffusing electrons
return to their origin after scattering within a disordered medium. At sufficiently low
temperatures, constructive interference of the backscattered electrons and their time-reversed
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counterparts yields an enhancement of the sample resistance that is suppressed by the
application of a magnetic field. Consequently, the magneto-resistance is found to exhibit a peak
near zero magnetic field, whose amplitude depends on the details of electron scattering in the
disordered medium. A similar resistance peak is also often exhibited by open quantum dots and
has been argued to result from the ballistic analogue of weak localization, in which electrons
backscatter within the dot through a series of collisions with its confining walls. According
to one semi-classical theory, the lineshape of this peak is expected to provide a probe of the
electron dynamics in the dot, with Lorentzian and linear magnetic field dependences predicted
for chaotic and regular scattering, respectively [21, 22].

In order to clearly resolve a zero-field peak in experiment, it is necessary to suppress the
influence of the surrounding fluctuations, which may dominate the low-temperature magneto-
resistance. This may be achieved in a number of different ways, among which include
measuring the response of multiply connected arrays of dots [22]. This approach was employed
by Changet al [22], who measured the magneto-resistance of circular and stadium-shaped dots
and found lineshapes consistent with the predictions of [21]. In another approach, magneto-
resistance traces are measured at a number of different gate voltages and are averaged to give
a well resolved peak [18, 95]. This approach was recently used to study the temperature
dependence of the phase-breaking time in open dots [32] and was found to give results
consistent with other experimental approaches. Another technique for obtaining a clear peak
involves increasing the measurement temperature to a few degrees kelvin, which is found to
quench the fluctuations while leaving the central peak resolved [96, 97]. In studies of an array
of nominally regular dots, the peak lineshape was found to evolve from linear to Lorentzian
forms when such a temperature increase was performed and this was argued to result from a
thermally induced onset of chaos at the higher temperatures [22]. In other studies of nominally
regular dots, a gate-voltage-induced transition from a linear to a Lorentzian peak was found
to occur as the dot leads were opened to support several modes [64, 96] (figure 19). This
behaviour was speculated to result from an onset of chaos in more open dots and a subsequent
theoretical study proposed that the relevant driving mechanism is an associated modulation of
profile-rounding at the dot corners [97].

While the lineshape of the zero-field peak obtained in several experiments appears to
provide good agreement with theoretical predictions, a recent report has suggested that the
peak maynot be a good indicator of chaos in open dots [98]. The motivation for this report
was provided by the results of a number of more recent experiments, whose results appear
to contradict the predictions of [21]. Leeet al, for example, studied the zero-field peak in a
circular dot and found this to exhibit a Lorentzian lineshape [33]. A similar result was reported
by Berryet alwho also studied the magneto-resistance of circular-shaped dots [99]. Even more
surprisingly, the low-temperature magneto-resistance of pairs of quantum point contacts has
been found to exhibit a Lorentzian peak, in spite of the fact that there is no mesoscopic dot
present to provide chaotic scattering in these structures [100, 101]. Motivated by the notion
that magneto-transport studies of open dots provide a selective spectroscopy of their density
of states (see section 4 above), Akiset al have suggested that the observation of a zero-field
peak results from energy averaging of this discrete spectrum [98]. The basic idea is that at
the finite temperatures where experiment is performed transport measurements of the dots
sample a finite window in the density of states. The width of this window in turn depends
on temperature, the degree of dephasing and the strength of the coupling that exists between
the dot and its external environment. By averaging magneto-resistance traces computed at
different energies, Akiset al have found that both Lorentzian and linear lineshapes may be
observed in the same dot geometry! The generic nature of this result has been confirmed in
studies of both hard-walled and realistically computed quantum dot profiles [98].
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Figure 19. The low-temperature magneto-resistance (<0.1 K) measured in a 0.6µm dot shows a
transition from a Lorentzian to a linear zero-field peak lineshape when gate voltage is varied. The
Lorentzian peak is plotted with symbols (+) and the linear peak is obtained for a more negative
voltage applied to the split gates of the dot (note the change in zero-field resistance for the two
dots).

7. Discussion: outstanding issues and future work

While a number of approaches have been employed to study electron dephasing in open dots
[32, 35, 36, 38], a partially consistent picture now appears to be emerging from the results of
these studies. In most experiments, the phase-breaking time is found to vary roughly inversely
with temperature, consistent with the results of a recent theory that assumes dephasing to
arise from the Coulomb interaction of electrons in the dots [40]. An unaccounted feature of
experiment is the low-temperature saturation of the phase-breaking time, observed in some
studies. This has been independently ascribed to a breakdown of the semi-classical model
used to extract dephasing times [35] and a change in the dimensionality of the phase-breaking
process at low temperatures [36]. It is well known from studies of disordered systems that the
phase-breaking time in one-dimensional quantum wires may exhibit a similar saturation to that
discussed here [42, 43, 102–104]. This has recently been argued to result from dephasing that
is induced by the zero-point motion of electrons in the wire [104]. This interpretation remains
the subject of controversy [105, 106], however, and the connection between the saturation
observed in wires and dots is at present unclear. Other unexplained features of experiment
include the absence of a well defined scaling of the phase-breaking time with dot size [32, 38]
and a strong sensitivity to dot-to-dot variations [38]. In this regard, it seems clear that a theory
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of dephasing that accounts for the influence of remnant disorder in the dots is required. As for
future experiments in this area, a relatively unexplored avenue for the study of dephasing is
provided by non-equilibrium transport studies [49, 51, 52], which should provide a powerful
tool for distinguishing between different relaxation processes in the dots.

In studies of the fractal nature of the magneto-conductance fluctuations in open dots, by far
the most controversial issue concerns the origin of the exactly self-similar features reported in a
Sinai billiard [64]. During the final stages of preparation of this review, a pre-print was received
in which a simple physical model was used to reproduce the self-similarity seen in experiment
[107]. By combining oscillatory contributions to the conductance, with flux periods of both
h/e andh/2e, these authors were able to generate self-similar magneto-resistance structure
on four magnetic field scales. Crucially, these authors found that close agreement between
experiment and theory was only possible if the electrons orbits contributing to the magneto-
conductance were assumed to follow a non-trivial distribution. The role played by the device
structure in establishing this distribution, however, remains undetermined at present.

Other studies of quantum dots reveal their magneto-conductance to be dominated by a
small number of stable orbits that are selected through coupling conditions with the point
contact leads [70, 77, 82, 84, 85]. At temperatures where phase coherence is maintained over
long distances, interference of the selectively excited orbits gives rise to wavefunction scarring
that recurs periodically with gate voltage or magnetic field. The influence of the scarring on
the transport behaviour remains a source of controversy [108, 109], and some authors have
disputed the significance of the scarred states for electron transport [109]. Crucially, though,
the scarring implies a non-uniform sampling of phase space in the dots, which is inconsistent
with the presence of chaos. Instead, it has been suggested that electron transport in open dots
is quite regular in nature, being dominated by a few orbits that are stabilized by the collimating
action of the point contact leads and the discrete quantization within the cavity itself [71].
These notions appear consistent with the recent suggestion that the zero-field peak seen in the
magneto-resistance of the dots may not be used as a reliable indicator of chaos [98]. Since the
influence of specific orbits is found to be more pronounced in dots of smaller size, in which the
discrete quantization of the level spectrum is more clearly resolved, an important implication
is that the properties of these dots should no longer be well described by random matrix theory,
which derives from an assumption of ergodic scattering in the dots.

A surprising aspect of the studies discussed above is the manner in which single-particle
models of electron transport may be used to successfully account for much of their observed
behaviour. Recently, however, a number of experiments have focused on the behaviour
exhibited byisolateddots, in which electron–electron interaction effects are expected to play a
far more important role [24–26, 110–116]. While a thorough discussion of these studies goes
beyond the scope of this present review, significant deviations from the predictions of non-
interacting random matrix theories have been reported [110, 111], pointing to the increased role
that interaction effects play in closed dots. Of particular relevance to the studies presented here
is recent evidence for the persistence of such charging effects inopendots [113, 115, 117, 118].
An important direction for future work will therefore be to clarify the relative roles of single-
particle and many-body effects in open dots.

8. Summary

In this review, we have seen how quantum dots may be used to investigate signatures of classical
scattering dynamics in the properties of quantum mechanical systems. At temperatures of the
order of a degree kelvin and below, interference of coherent electrons is an important process
in determining the electrical properties of the dots and the details of this interference may be
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probed using transport studies. Magneto-transport experiments are of particular value here
and provide information on the electron dephasing time. In addition to the existence of fractal
magneto-conductance fluctuations, these studies also reveal the presence of selectively excited
orbits in the dots. A crucial role in selecting these orbits is thought to be played by the quantum
mechanical lead openings which, when configured to support a small number of modes, inject
electrons into the dot in a highly collimated beam. With the coupling provided by these few
mode leads, opening the dot to its external environment does not obscure its discrete spectrum,
as has been suggested previously. Rather, the different states of the dot are broadened non-
uniformly and transport measurements may be used to provide aselectivespectroscopy of this
filtereddensity of states.
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and Gossard A C 1998Phys. Rev. Lett.804522
[112] Huibers A G, Patel S R, Marcus C M, Brouwer P W, Duruöz C I and Harris J S Jr1998Phys. Rev. Lett.811917
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